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Abstract--The paper describes the modeling of the solidification process over a planar substrate which is 
being pulled through a melt bath at a constant speed. The complexities generated by the presence of the 
two moving/unknown boundaries are dealt with by solving the transient governing transport equations 
numerically, and by using an efficient finite volume scheme employing a multizone adaptive grid generating 
technique and a curvilinear finite volume approach. The temperature distributions in the solid and melt, 
the melt flow field in the bath, the thickness of the solidified layer, and the shape of the free surface are 

calculated and reported. 

1. INTRODUCTION 

During the last few decades, the hot-dip metallic coat- 
ing technique has been utilized extensively in the 
manufacturing and cladding of wire, and the gal- 
vanizing and coating of metal strips, sheets, etc. [1, 
2]. Recently, there has been renewed interest in this 
process for fabrication of tapers, lens-like waveguides, 
and mono- and multi-layer anti-reflection coatings of 
spatially varying thickness from colloids and super- 
saturated solutions [3, 4]. The modern applications of 
the dip-coating process, and the implementation of 
closed-loop computer controls in the traditional appli- 
cations [5], require a fundamental understanding of 
the heat and mass transfer mechanisms involved in 
the deposition and/or solidification over a substrate 
that is pulled through and withdrawn from a finite 
bath. 

In spite of the broad range of applications, the 
limited number of works on the problem are based on 
oversimplified models, and have neglected transport 
mechanisms which are particularly important in the 
modern applications. Seeniraj and Bose [6], for exam- 
ple, performed an analysis of freeze-coating of poly- 
meric materials over a moving metallic substrate by 
assuming the temperature of the metallic object to 
remain constant and uniform, and the molten bath to 
be at its melting te~aaperature. The first assumption is 
not appropriate for a substrate with finite thickness 
and heat capacity, while the second limits the analysis 
to the particular condition considered. Cheung [7] 
analyzed freeze co~Lting on a fiat plate where constant 
plate temperature and saturated liquid temperature 

conditions were relaxed. Whereas constant substrate 
temperature yielded a monotonic increase of  coating 
thickness over the plate [6], finite heat capacity made 
it possible to predict initial deposition followed by 
remelting [7]. However, both of these studies cannot 
be rigorously used for analyzing dip-coating since they 
assume the existence of a leading edge for the solid- 
ification front as well as for the melt flow. In doing so 
the effects of bath geometry are ignored. Zhang et al. 
[8] conducted a numerical study of the dip-coating 
process in a finite-size bath, accounting for the buoy- 
ancy effects. They concluded that the boundary layer 
assumption for the melt flow over the moving solid is 
a gross simplification, particularly in the region near 
the bath floor, where the solidification rate is the high- 
est. They had, however, neglected the axial heat con- 
duction in the solid after leaving the bath, which 
defines the freezing rate during the final stage of con- 
tact between the solid and the melt. The capillary 
and thermocapillary effects were also neglected by 
assuming the free surface to be planar and adiabatic. 

The axial heat conduction in the solid emerging out 
of the bath, and the capillary and thermocapillary 
effects, are of cardinal importance in the modern 
applications of the dip-coating process. In fabrication 
of waveguides by a microcontrolled dip coating 
process, the deposition takes place essentially in the 
meniscus, and is controlled by the withdrawal rate of 
the solution by the substrate and its heat transfer 
characteristics. In the traditional applications, 
recently, improvements in the coating characteristics 
have been achieved through utilization of "gas knife" 
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NOMENCLATURE 

Ar cavity aspect ratio = HID u, v 
Bd dynamic Bond number = Ra/Ma 
Bo static Bond number = We/Fr W 
Cp specific heat 
C cavitation number = (Pa--Pr)/P u2 We 
d plate thickness x, y 
D half-width in the bath 
F performance function 
Fr Froude number = u~/gH fl 
g gravitational acceleration 7 
G weight function of grid orthogonality 6 
Gr Grashof number = .qfln3(Th - -  Tf)/v 2 0 
hf~ latent heat of fusion x 
H melt height in the bath v 
I grid characteristic p 
Ja Jacobian of a 

transformation = x~y.--x~y¢ 
L port height 
M inertial coefficient of the grid a 

movement f 
Ma Marangoni h 

number = (c~a/3T)(Th- Tr)H/#~ i 
p pressure (isotropic stress component) int 
q heat flux = ~O/Ox* 1 
Pr Prandtl number = v~/~ M 
R radius of the curvature O 
Ra Rayleigh number = GrPr r 
Re Reynolds number = usiH/vl s 
Ste~ liquid Stefan number = %] (Th -- Tf)/hfs S 
Stes solid Stefan number = eps (Tf-- Tsi )/hrs t 
t time W 
T temperature ~, r/ 

velocity components in axial and 
radial directions 
weight function of the volume 
or area 
Weber number = pu2iH/a 
coordinates. 

Greek symbols 
thermal expansion coefficient 
ratio of specific heats = Cps/Cpl 

meniscus height 
dimensionless temperature 
ratio of thermal conductivities = ks/kl 
kinematic viscosity 
mass density 
surface tension. 

Subscripts 
ambient 
fusion 
high temperature 
inlet 
interface 
liquid 
inertial 
orthogonality 
reference 
solid 
smoothness 
top surface 
weight 
curvilinear coordinates. 

technology [9, 10], that comprises high-pressure gas 
jets that impinge onto the moving plate above the 
meniscus. It deems feasible regulation of the coating 
thickness by controlling the "gas knife" parameters 
(i.e. the position and orientation of the knife with 
respect to the substrate surface and the fee surface, as 
well as gas temperature, pressure and velocity). The 
gas impingement, however, may influence more than 
one transport mechanism involved in the dip-coating 
process. Specifically, it may (a) change the axial cool- 
ing characteristic of the solid (b) reduce the height of 
the meniscus and melt withdrawal rate, and (c) affect 
the thermocapillary flow at free surface. Thorough 
understanding of the complex interaction of these 
effects is not available in the open literature, and is 
essential for efficient utilization of this technology. 

The objective of this study is to examine how the 
cooling effect of the free surface and the solid at exit, 
and the surface tension involved in the dip-coating 
process interact to influence the solidification rate. 
The governing transport equations are solved numeri- 

caUy by using a multizone adaptive grid generating 
technique, along with a finite difference scheme 
developed for non-orthogonal control volumes. The 
free surface and solid/liquid interface equations have 
been developed carefully in the paper. The solid- 
ification process over a planar substrate which is being 
pulled at a constant speed through a melt bath is 
modeled. 

2. FORMULATIONS 

Hot-dip coating with jet finishing is a method of 
obtaining a coating of controlled weight and uni- 
formity on hot-dip coated strip by passing the strip 
through an elongated jet of gaseous fluid as it leaves 
the molten pool [10]. A schematic representation of 
the process used in numerical simulation is shown in 
Fig. l(a). The final solidified coating thickness is 
related to strip speed, jet nozzle operating parameters, 
coating metal and fluid properties, and surface 
tension. The complexities of this process are due to : 
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Fig. 1. (a) Schematic of the jet finishing process ; (b) zone distribution ; (c) grid distribution ; (d) flow field 
distribution (liquid velocity has been enlarged 1000 times in the figure)• 

co-existence of three phases (solid, liquid and gas); 
irregular domain and two moving boundaries (the 
solid/liquid intertq~ce and the free surface) ; and a lot 
of  sub-processes (igas jet system ; strip moving system ; 
molten coating material operating system) involved 
in the whole process systems. The zone and grid distri- 
butions have been investigated and the demonstrat ion 
results are shown in Fig. l (b)-(d) .  In Fig 1 (d), the 
domain and interfaces are given : however, in the real 
calculation the shapes and locations are unknown and 
they are a part of  the solution. 

The case considered in this paper neglects the gas 
jet system : however, the cooling effect of the gas jet 
is considered from the boundary  conditions. A dip- 
coating system which is considered in the modeling is 
schematically depicted in Fig. 2, where the gas phase 
is not  included. A metal flat plate of thickness ds i  is 
pulled at speed usi through a molten metal bath of 
height H. The plate enters the bath at a temperature 
below the fusion temperature, T s i  < Tf~ and a crust 
solidifies over its surface that may grow or remelt as 
the plate moves vertically in the bath. Liquid at T t i  > T f  
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LI, 

Fig. 2. Schematic diagram of the hot-dip coating system. 

is introduced to the bath to compensate for the mass 
removed via solidification, so that the bath height 
remains constant during a simulation. To formulate 
the problem, the following simplifying assumptions 
are used: (1) laminar flow; (2) Newtonian phase 
behavior; (3) local thermodynamic equilibrium; (4) 
constant properties with the exception of the density 
in the buoyancy term (Boussinesq approximation); 
and (5) the moving plate and the solidified layer are 
of the same material [11]. 

The governing equations are non-dimensionalized 
using the following dimensionless variables : 

(x*,y*) = (x ,y) /H t* = tusi/H (u*,v*) = (u,v)/usi 

p* = (P--pr)/(pu~) 0 = (T-- TO/(Tli- Tf). 

With above assumptions and dimensionless vari- 
ables, the problem is governed by conservation equa- 
tions for mass, momentum and energy in the liquid 
melt, and the energy equation in the solid to yield : 

continuity 

V 'U* = 0 (1) 

X-momentum 

0u* +V" (U'u*) = V" ReeVU* - 0t* 

Y-momentum 

Ov~*+V'(U*v*)ot* = V' (~eVV*)  0P*0y, 

ar 
+ --~e20J 

(2) 

1 0r/* 
Fr Oy* 

(3) 

energy in liquid 

001 V 

energy in solid 

Ot ~ +V" (U*0s) = V" V0s . (5) 

In the above equations, U is the melt velocity vector 
with u and v components in x and y directions, respec- 
tively, and x and 7 are thermal conductivity ratio and 
specific heat ratio between solid and liquid, respec- 

tively. In equation (3), the last term on the right hand 
side comes from the definition of the pressure : 

p .  = p .  + 1 (1 + 6" - x*) (6) 

where 3 = 6(t*,y*) is the meniscus height. 
For the boundary conditions, no-slip and adiabatic 

conditions are used over the bottom surface and wall 
of the bath. At the initiation of the numerical simu- 
lation, a fresh planar solid is introduced into the bath 
with a constant vertical velocity u* -- 1.0 and a uni- 
form temperature 0si =-Stes/TSte~. The average 
height of the melt bath H is kept constant during a 
simulation by compensation for the melt removed 
from the bath via solidification on the planar solid. 
Liquid phase-change material, at 01~ = 1.0, is intro- 
duced into the bath from a port on its wall with a 
constant velocity, which is calculated by total liquid 
material mass balance, and the height of the port L is 
adjusted in different simulations such that the velocity 
of melt entering the bath is not greater than 10% of 
the solid velocity. 

Solidification of a pure substance with a definite 
fusion temperature Tf is modeled : therefore, the solid 
and liquid phases are separated by a sharp interface, 
F(x* ,y* ,t*) = 0, at which the temperature is required 
to be continuous, 

Os(x*,y*, t*) = Ol(X*,y*, t*) = 0. (7) 

The energy balance at the solid/liquid interface defines 
its position and motion can be derived as [12] 

p~hf~(Uint + U s i )  " .  = k s OTs - k  I OTI 
0n 0n (8) 

where densities of the two phases are assumed equal, 
Usi is the plate velocity and Uint'n is the interface 
normal velocity which can be calculated as follows : 

Uin t " VF OF/Ot 
Uint'n - - -  (9) 

IF[ IFI 

Combining above two equations, the dimensionless 
form of the equation can be written as follows : 

OF Stel 
0t ~ = [U*+ R ~ .  pr (V0,--xV0s)] "VF. (10) 

At the free surface, the required hydrodynamic con- 
ditions are : (1) the fluid particles at the surface must 
remain attached (kinematic condition); (2) the sur- 
face tension is a function of temperature only; (3) the 
tangential shear stress is due to the variation of surface 
tension of the liquid (shear stress in the gas on the 
other side of the free surface is neglected) ; and (4) the 
liquid and the atmospheric pressure must be balanced, 
except for surface tension effects [13]. Denoting the 
free surface position by x*= 1 +6*(t* ,y*), the above 
conditions have the following dimensionless forms : 

u* D3* &5* 06* 
= Dt ~ - + v * ~ , ,  (11) at* oy T 
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Table 1. Governing parameters and baseline data 

Parameter Definition Values used 

Ca.vity aspect ratio Ar = H/D 0.5 
Conductivity ratio K = kdk~ 2.5 
Specific heat ratio ~ = Cps/Cp I 1.0 
C~vitation number C = (p~-p,)ipu~, 0.0 
Rayleigh number Ra = g fl H 3 ( Tli - TO~vial 1000 
Reynolds number Re = U,H/v~ 666.7 
Prandtl number Pr = vd~ 0.015 
Solid Stefan number Ste~ = cp~(T~- Tf)lhr, 0.0545 
Liquid Stefan number Stel = Cpl(Tl i -  Tf)/hfs 0.0273 
F[oude number Fr = u~/gH 0.1 or 0.0 
Weber number We = puZ H/a inf 
Marangoni number Ma = (da/dT)(Tl i -  Tf)H/I tot 0.0 
Dynamic contact angle ~/2 
Solid Nusselt number {O0/On*}: = 1 +~" 0.0 
Liquid Nusselt number { O0 / dx* } : _ ~ 0.0 

i)v* M a  ~301 
(12) 

iTx* R e P r  dy* 

p*-- C-~e 

where M a ,  We  and C are Marangoni number, Weber 
number and cavitation number, and R* is the dimen- 
sionless radius of curvature of the surface given by 

1 OzrS*/ay .2 
(14) 

R* [l+(aa*/dy*)2] 3/2" 

To examine the effects of "gas knife", heat loss is 
introduced at the free surface on the melt flow in the 
bath:  adiabatic or convective and radiation cooling 
conditions were siraulated, i.e. 

0 n J : = l + ~ .  = qi. (15) 

Adiabatic or conductive cooling conditions were used 
for the solid emerging from the bath : 

Ox*Jx*:xr = q~. (16) 

The governing equations (1)-(5) indicate that the 
problem is characterized by dimensionless numbers 
Re,  Gr, Pr,  Fr, We,  qs, and qt which are defined in 
Table 1, The ratio of the thermal conductivities x, 
ratio of heat specifics 7, aspect ratio Ar,  contact angle, 
Stefan number of liquid, Stefan number of solid, 
Marangoni number, and cavitation number are also 
defined in Table 1. 

3. SOLUTION PROCEDURE 

The principal difficulties in the analysis of multi- 
dimensional phase-change problems arise from the 
fact that the position of the solid/liquid interface is 
not known a priori  and is not necessarily along the 
coordinate contours. Numerous methodologies have 
been developed to predict phase-change in the pres- 

ence of melt flow due to buoyancy or other forces. In 
this study, additional complications are introduced by 
the presence of the free surface that is not planar and 
is also part of the solution. 

To overcome the difficulties associated with the 
timewise changing domains and irregular boundaries, 
the Multizone Adaptive Grid Generation (MAGG) 
technique and the Curvilinear Finite Volume (CFV) 
approach [14, 15] were employed. The detail descrip- 
tions can be seen in refs. [14, 15]. In this paper, over- 
views of the M A G G  and CFV approach are provided, 
and important features of the numerical solution pro- 
cedure are highlighted. 

The M A G G  technique is desirable in situations 
where the problem domain is composed of regions 
with vastly different physical properties and/or 
internal moving boundaries. Under these circum- 
stances, the grid system will be generated for different 
zones present, such that internal boundaries sepa- 
rating these zones coincide with some grid lines. With 
this feature, while the grid nodes in different zones are 
allowed to move (in response to the development of 
the solution, movement of the external boundaries 
or the internal boundaries themselves), the interfaces 
between the zones are preserved and grid points are 
only permitted to move along them [14, 15]. Zhang 
and Moallemi have developed two-dimensional for- 
mulations by using the variational method to min- 
imize a linear combination of integrals which are mea- 
sures of different grid characteristics; namely, the 
smoothness Is, orthogonality Io, weighted cell area Iw, 
and inertia IN of the grids. These integrals may be 
written as [15-20] 

I s =  ~+ ~ +Y~ +Y~X~ d~ d Ja ) r/ (17) 

i o = f f G ( x e x , + y , y , ) 2 d ~ d t l  (18) 
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l =ffM(¢,t/)(x-xO) dCdt/ (20) 

where W and G are weight functions which are to be 
specified to control grid volume (area) and orthog- 
onality, respectively, M(~, t/) is the inertia coefficient, 
xO is a given mesh, for example, the mesh of the last 
time-step, and Ja is the Jacobian of the mapping, 

Ja = x~y, l-x~y~ (21) 

with subscripts denoting the variables with respect to 
which partial differentiation is performed. 

A grid generator may be made part of an algorithm 
to adapt the grid distribution to data generated by the 
solution of the finite difference equations, by using 
an appropriate weight function W(x,y) (e.g. some 
measure of the solution variation or error), resulting 
in a finer grid where the weight is large. The choices 
of the weighting functions W and G are generally 
problem dependent. The grid generation system is 
formed by minimizing a weighted sum of integrals 
(17)-(20), 

,=  ls+)colo+)~wlw+~.MtM = f fFd~dt/ (22) 

where F is the kernel of the functional, which is also 
referred to as the overall "performance function" of 
the optimization problem [21]. The Euler's equations 
for the variational problem (22) form a system of 
partial differential equations from which the coor- 
dinates of the grid nodes are calculated, 

0x 0~ 0x~ 0t/ 0x F =  0 

( 0  a 0  0 0 ) F  
fly 0~ 0y¢ 0 r / ~ ,  = 0. (23) 

This grid generation routine is formulated via the 
variational problem (22) for the entire domain, with 
the exception of the zonal interfaces along which the 
grid distribution is obtained by the same two-dimen- 
sional variational problem, subject to constraints of 
the form 

g l  ---- f l ( x ,  y )  : O , f o r I = I 1 ,  I =12, . . . 

with Imin < /i < /max (24) 

where 9~s are known real-valued functions with respect 
to arguments x and y, which are implicit functions of 

and t/, and define the interfaces for constant t/~ 
values. The above constrained optimization problems 
are converted to unconstrained ones by introducing 
Lagrange multipliers At [2 1 ] to form augmented func- 
tionals : 

I=f f (F+A,gl )d¢dt / .  (25) 

The Euler-Lagrange equations of the above 
expression along with the constraint (24) provide the 
necessary conditions for finding the grid distribution 

(x(~, q0, Y(~, t/0) and the Lagrange multiplier A~. 
The interface position function and its derivatives are 
determined from an accurate curving fitting procedure 
[22] in order to preserve its shape, while the grid points 
move along it. 

The multizone adaptive grid generation technique 
used here, explained in more detail in ref. [15], is more 
efficient and has better characteristics than previous 
ones [1 l, 18, 19]. This is mainly due to the direct and 
dynamic link between the zonal and interfacial grid 
generation routines that is provided by the presence 
of second-order derivatives (e.g. x,, and y,,) in this 
formulation. The finite difference approximation of 
the Euler's equations are formed and solved by the 
SOR method to determine the coordinates of the grid 
points [15]. 

The curvilinear finite volume approach is based on 
flux discretization in the physical domain and, there- 
fore, modifications in the physical process models may 
be easily implemented, and the predictions may be 
readily examined. The governing equations of the 
transport processes, controlled by diffusion and con- 
vection, can be cast into a general form as 

Or"p~ +V'(r"pu49) = V'(r"FVq~)+r~S (26) 
~t 

where the geometry index n has a value of 0 for planar 
and 1 for the axisymmetric coordinate systems, 49 is 
the general dependent variable, S is the volumetric 
source of 49, p is mass density, u is the velocity vector, 
and F is the diffusion coefficient for 49. The above 
equation can be written in a generalized coordinate 
system (¢, t/) as follows [23, 24] : 

0 ~ F  
0 (r'Ja pc~) + p U49 o5 

+ 0. (ova- °49 ) h. ~ = r"JaS(~,t/) 

0 ( f i r  049 0 (flnF 049"] (27) 
 I-U o . ) -N\  h, 0¢/ 

where h~, h~, e~, fie, e., and fir are geometric coefficients 
[24]. In above general equation, U and V are the 
relative contravariant velocity components normal to 
the constant ~- and t/-coordinate lines, respectively. 
These are related to the covariant velocity components 
(u~, u,) and the grid velocity components (Ug, vg) 
through 

(28) 

The grid velocity components are defined as 

Oy Ox ~x Oy ~x Oy Oy Ox 
(29) 

ug Oil Ot Oq c~t Vg c~ ~?t 0~ Ot" 

The merits of this methodology have been dem- 
onstrated through its successful application to the 
simulation of different flow and heat transfer prob- 
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lems in complex geometries, and transport processes 
involving free and moving boundaries [15]. 

The governing equations for the liquid phase, equa- 
tions (1)-(4), and the solid, equation (5), were solved 
iteratively and independently by invoking the quasi- 
steady-state assumption for the solid/liquid interface. 
At the free surface., equations (9) and (10) were used 
as boundary conditions for x- and y-momentum equa- 
tions, respectively ; and equations (11), (12) were used 
along with the pressure equation to adjust the height 
of the free surface after each iteration for a given time 
step. With the interface fixed at any time step, the 
fusion temperature at the interface, equation (7), was 
enforced as the boundary condition for both phases. 
At any time step, after the solutions for the two regions 
were converged to the desired accuracy, the interface 
energy balance equation (8) was employed to evaluate 
the new position of the solidification front along the 
plate. 

After conducting a few grid sensitivity runs and in 
a compromise between accuracy and computational 
time, a grid system containing 32 x 42 nodal points in 
the melt, and 10 >: 42 nodal points in the solid was 
used. 

Automatic time step control is incorporated in the 
program, based on the maximum local interface dis- 
placement being less than 10 % of the local grid width, 
to avoid numerical oscillation at early times into the 
simulation, which may happen if the displacement is 
greater than 50% of the local grid width. At any time 
step the solution was considered converged if 

I~n+l( i ' J ) -~b"( i ' J ) l<  10 -4 (30) 

Max[~"+~ (i,j)l 

where i and j refer to computational nodes, n is the 
iteration loop counter and ~k is u, v, 01, and 0s. The 
residual source of mass was less than 10 -~2 for all the 
cases examined. 

4. RESLILTS AND DISCUSSION 

The problem is a steady-state one (with respect to 
a coordinate system fixed to the bath), but it is cast in 
time-dependent form for convenience in the numerical 
implementation. The initial conditions are arbitrary 
and are taken to be such that the melt is at rest and at 
the fusion temperature of the phase-change material. 
At the initiation of the numerical simulation, a planar 
solid of thickness d* enters the bath with a constant 
vertical velocity u~ = and a uniform temperature 0si. The 
height of the melt at the inlet of the bath is kept 
constant during a simulation by introducing liquid 
phase-change material at 0,, into the bath with a uni- 
form velocity U*, which is evaluated at each time step 
by comparing the solid mass entering the bath with 
the solid mass exiting the bath. 

The flow and heat transfer in the melt and the thick- 
ness of the solidified layer are governed by 15 inde- 
pendent dimensionless parameters, listed in Table 1. 

The large number of the independent parameters pro- 
hibit a complete parametric study of the problem. The 
intent here is {o demonstrate the applicability of the 
methodology developed in this paper to a rather com- 
plex phase-change problem. The cases discussed here, 
however, will illustrate: (1) superheating effect of the 
melt ; (2) subcooling effect and pull rate of the solid 
substrate entering the bath ; (3) the influence of capil- 
lary and thermo'capillary on the shape of the free 
surface; and (4) the influence of cooling of the solid 
at exit and the free surface on the fluid flow and the 
thickness of the solidified layer. The baseline case, 
shown in Table 1, serves as a reference for comparison 
with the results of variations of the various dimen- 
sionless parameters. In Table 1, the values of 
Stes = 0.0545 and Ste~ = 0.0273 correspond to 20°C 
subcooling of the solid and 10°C superheating of the 
melt of aluminum, respectively. The free surface and 
the solid emerging from the bath are taken to be 
adiabatic, and other parameters, Fr = 0.1, We = ~ ,  
Ma = 0, and ~b = n/2, are used. 

Figure 3(a) and (b) presents the flow field and tem- 
perature distribution in the bath for the baseline con- 
ditions, corresponding to Gr/Re2Ar = 0.3. The right 
boundary of the graphs is the centerline of the moving 
solid substrate when melt is introduced from the port 
in the wall. The streamlines corresponding to the inlet 
flow terminate at the solid/liquid interface (illustrating 
mass continuity) as all the mass entering is eventually 
solidified on the plate. The flow field established is 
mainly due to the shear induced by the solid motion, 
with a minor contribution from thermal buoyancy. 
The buoyancy-induced flow opposes the plate shear 
induced flow. The shear induced recirculation diverts 
the hotter melt entering the bath towards the left bot- 
tom corner adiabatic surface where a small secondary 
eddy is formed. The surface tension force is causing 
the formation of the meniscus which, in the absence 
of the Marangoni effect, helps the smooth diversion 
of the boundary layer flow. The temperature distri- 
bution in the bath is in agreement with the flow field 
and indicates a weak buoyancy. The solid temperature 
changes very abruptly as it enters the bath and is 
exposed to the melt. 

Figures 4 and 5 present the flow fields and tem- 
perature distributions in the bath for Ra = 3333.3, 
and Ra = 10000, corresponding to Gr/Re2Ar = 1.0, 
3.0, respectively. All other parameters remain at their 
baseline values. It is seen that the flow field established 
is due to an interaction between the buoyancy in the 
melt and the shear induced by the solid motion. By 
increasing the contribution of buoyancy, i.e. increas- 
ing the Rayleigh number, the larger natural con- 
vection cell is enlarged, as shown in Figs. 3(a), 4(a) 
and 5(a), and the temperature distributions in the bath 
also indicate stronger buoyancy, as shown in Figs. 
3 (b), 4(b), and 5 (b). The equal contributions of buoy- 
ancy and shear to the melt flow are observed in Fig. 
4, corresponding to Gr/Re2Ar = 1.0. 

The effects of Stefan numbers Ste~ and Stes on the 
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Fig. 3. Stream function distribution in the bath, and temperature contours in the solid and the melt, 
Gr/Re2Ar = 0.3. 
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Fig. 7. Effect of Reynolds number on solidification thickness. 

thickness of the solidified layer are presented in Fig. 
6(a) and (b). The values of  Stel and Stes used in the 
simulations are shown in the figure, and the other 
parameters keep their baseline values. The Stefan 
number of the liquid is a measure of superheating level 
of the melt : therefore, the thickness decreases with the 
increase of Ste~, as expected, in Fig. 6(a). The growth 
of the solidified layer is defined by the energy balance 

at the interface, and the remelting of the solidified 
layer may occur if the superheating is strong enough 
to overcome the subcooling effect in the solid sub- 
strate, as shown in Fig. 6(a). The solid Stefan number 
indicates the level of the subcooling; its decrease 
reduces the solidification rate as shown in Fig. 6(b). 

The effect of the Reynolds number on the coating 
thickness is illustrated in Fig. 7. Reducing the Reyn- 
olds number leads to an increase of the residence time 
of the solid substrate in the melt, which results in more 
solidification and a larger exit thickness. However, 
since the sensible heat of the solid substrate is limited 
by its inlet temperature, the increasing of the residence 
time may not lead to an appreciable increase in the 
solidification after a certain limit. The value of this 
limit is mainly a function of the solid and liquid Stefan 
numbers and the thermal properties. When the resi- 
dence time exceeds the above limit, the solid substrate 
will start to remelt even at small levels of Steu. 

In the range of parameters examined, the influence 
of the capillary force is found to be limited in the 
region near the free surface. The variations of the 
shape and location of the free surface due to changing 
Fr and We are shown in Fig. 8(a) and (b). Free surface 
shapes are wavy, and correspond to the flow fields 
presented in Figs. 3-5. The Weber number is set to 
infinity for two cases shown in Fig. 8(a), i.e. surface 
tensions are set to zero. By comparing Fig. 8(a) and 
(b), the Froude number is observed to be an important 
rate in defining the meniscus height. The thickness of 
the solidified layer, however, is hardly affected by the 
changes of the meniscus height. This is essentially due 
to the fact that the free surface shape does not cause 
a significant change in the flow field, and, at the same 
time, the solid temperature is very close to the fusion 
temperature, owing to adiabatic boundary conditions 
assumed for the solid exiting the bath. It is also found 
that the shape of the free surface becomes smooth 
(more planar) when the surface tension is present, 
while the Weber number has little effect on the men- 
iscus height for the conditions examined. The thermo- 
capillary force, however, is found to affect the solidifi- 
cation thickness by altering the flow field near the free 
surface. Figure 9 shows the growth of the deposited 
layer in the bath for different values of Ma. For posi- 
tive values of Ma, the surface shear pulls the melt 
away from the solid, causing the melt boundary layer 
over the solid to thicken near the free surface. This 
yields a slightly high solidification rate. However, for 
negative values of Ma, the melt is pushed towards 
the solid by the free surface shear, creating a small 
circulation zone in the meniscus region, which causes 
some remelting of the solid. It is worth mentioning 
that, while most pure metals have positive Marangoni 
numbers, impurities tend to change the sign of dcr/dT, 
giving rise to flow of melt towards the moving solid, 
and some remelting of the solidified layer. 

The influence of heat losses at the free surface, and 
through the solid, on the thickness of the solidified 
layer is shown in Fig. 11. ql is the natural convection 
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cooling of the free surface by the ambient air or forced 
convection cooling due to "gas knife" flow. The natu- 
ral convection cooling on the free surface is imposed 
only on the right half of  the free surface, the other 
part of the free surface is kept adiabatic. The results 
illustrate that the solidification rates are generally 
higher with cooling of the free surface or the solid. 
Overall, the cooling of the solid has a more pro- 
nounced effect on the solidification than cooling of 
the melt. The melt cooling changes the flow pattern 
in the bath and, thus, has an indirect effect on the 
solidification process ; whereas the cooling of the solid 
upon emergence from the bath directly influences the 
solidification rate. 

Figures 11-13 show the effect of surface heat loss 
on the flow fields zLnd temperature distributions for 
Fr = 0. When comparing Fig. 13 with Fig. 33, it is 
noted that the flow patterns are quite different. The 
explanation is that Lhe cooling of the solid at the exit 
has changed the temperature gradient in this area. In 
view of the local energy balance, the liquid tem- 
perature distribution should vary with the cooling 
factor at the exit. ~[hus the flow pattern in Fig. 13 is 
expected to be different from the one in Fig. 11. In 
Figs. 31 and 13, ther temperature of the melt remains 

above the melting point, but in Fig. 12 the temperature 
drops below the melting point. When the subcooling 
temperature of the melt reaches a critical value, the 
liquid may suddenly solidify and possibly move 
towards the solidified layer due to the surface tension 
and buoyancy force in the free surface. Furthermore, 
it may attach to the solidified layer and destroy the 
dip-coating process. 

5. C O N C L U S I O N S  

Numerical computations have been performed for 
the hot-dip metallic coating processes. The governing 
transport equations are solved numerically by using 
the M A G G  technique and curvilinear finite volume 
approach. By using a weighting function in the grid 
generating routine, the grid points are forced to 
remain clustered near the interface where the tem- 
perature gradients are largest. Capillary and ther- 
mocapillary forces are observed to play a significant 
role in defining the shape of the free surface. The flow 
structure in the bath, however, is determined by the 
interaction between the shear induced by the moving 
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Fig. 13. Stream function distribution in the bath, and temperature contours in the solid and the melt, 
q~ = 80, ql = O. 

solid and  thermal  buoyancy  for the range of  par- 
ameters  examined. The effect of  the surface tension 
on the solidification rate  is very small, and  its influence 
on  the flow is limited to the meniscus region. The  
cooling of  the solid emerging f rom the ba th  has  a 
significant influence on the thickness of  the solidified 
layer, while the cooling of  the free surface causes a 
small change in the thickness by changing  the flow 
field in the bath.  
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